

惠州精惠仪器设备有限公司 HUIZHOU JINGHUI INSTRUMENT EQUIPMENT CO.,LTD

JH9860K-BMS测试平台

作

手

册

目录

概述	3
满足标准	4
结构示意图	4
运行环境	5
主要技术参数	5
操作简介	6

一、概述:

本平台设备用于新能源电动汽车电池管理系统 BMS(以下简称 BMS)的性能测试, 根据 QC/T897-2011《电动汽车用电池管理系统技术条件》及 GB/T27930-2015《电动汽 车非车载传导式充电电机与电池管理系统之间的 通讯协议》为依据,以最大程度模拟实 车使用状况,通过控制各种信号传输,检验BMS性能的优劣。

平台采用独立夹具连接,操作简单,测试准确度高。不同型号配以对应的测试夹 具,更换使用,更换过程简单快捷,此设计大大增强设备的使用率;以满足BMS不同机型 的测试;采用标准机柜加测试台的结构,整机美观大方,测试方便。

外形图

二、满足标准:

QC/T897-2011《电动汽车用电池管理系统技术条件》

GB/T27930-2015 《电动汽车非车载传导式充电电机与电池管理系统之间的通讯协议》。

三、结构示意图:

连接探针由实车连接器连接,保证接触质量;

测试夹具

4

四、运行环境

工作电压: 220VAC;

- 额定电流: <10A;
- 额定功率: <4KVA;;

环境条件:①温度0℃~40℃;②湿度<85%;③无振动;④无电磁场干扰

五、主要技术参数

- 1、恒压源输出: 0∽1000V, 精度≤0.1%.
- 2、恒流源输出:-500A∽+500A,精度≤0.1%.
- 3、单体电压: 0∽5000mV, 精度±1mV.
- 4、单体电流: -3000mA∽+3000mA, 精度≤±1mA.
- 5、温度仿真: -40℃∽150℃, 精度 0.1%.
- 6、绝缘仿真: 1kΩ ∽ 5MΩ, 精度 0.5%.
- 7、供电输出: 0い36V/0い15A, 精度 0.1%.
- 8、耐压/绝缘: 0∽5000V/0∽9999MΩ, 精度 2%.
- 9、校准验证: 0∽1000V/0∽10A/100Ω∽100MΩ/3Hz∽300KHz.

10、SOC 精度: ≤5%

11、通讯协议: RS485-5/RS232-3/CAN2.0-4

12、全自动软件:实时显示 BMS 各检测参数、精度对比、运行状态和故障信息,可进行 单项功能、部分功能和全功能测试,可进行单次或持续循环测试,异常数据及时标记显 示,数据保存为 EXCEL 格式,方便数据分类查找,可手动设置 BMS 功能测试模式和各 项参数阈值;包含自动化测试和典型测试案例。并可上传至服务器,方便远程监控。

- 13、BCU、BMU 主从一体式:12S-60S BCU、BMU 主从分体式:48S-60S.
- 14、外形尺寸: 机柜 W600H1800D600mm+操作台 W1200H1000D900mm。
- 15、重量: 230kg+130Kg

六、操作简介:

1、将待测试BMS板放入测试夹具中对应的位置。

2、按下操作台的启动开关,接通整机电源。

3、打开工控机,双击桌面BMS测试软件。

4、开机自检OK,提示连接成功后即可按需求进行操作;

①、实时监控界面主要用于实验室操作,实时BMS板的数据监控,可对所有功能进行单独 监控和逻辑监控,方便功能的调试和整机运行测试;

	BMS数据中心		BMS	测试中心		设备控制中心	
	主相		从板数据				
工作	■状态	电压状态		电流机	(态	继电器	芯
BMS工作模式	正常工作模式(0)	系统电源电压(V)	0.00	霍尔电流1(A)	0.00	K1继电器状态	关闭
电子锁状态	关闭	ON信号采集电压值(V)	0.00	霍尔电流2(A)	0.00	K2继电器状态	关闭
BNIS系统自检状态	关闭	ACC信号采集电压值(V)	0.00	绝缘电路	目状态	K3继电器状态	关闭
单体累计电压(V)	0.00	(#由哭由压)	#&	正极绝缘阻值(KΩ) 负极绝缘阻值(KΩ)	0.00	K4继电器状态	关闭
CC (nv)	0.00	总正继电器电压(V)	0.00	枪口道	ŧ¢	K5继电器状态	关闭
C2C (nv)	0.00	总员继电器电压(V)	0.00	温度1(℃)	0.00	K6继电器状态	关闭
CP	0.00	继电器1电压(V)	0.00	温度2(℃)	0.00	K7继电器状态	关闭
电子锁信号1电压(V)	0.00	继电器2电压(∀)	0.00	温度3(℃)	0.00	K8继电器状态	关闭
电子锁信号2电压(V)	0.00	3地电器3电压(∀) 继电器4电压(∀)	0.00	温度4(℃)	0.00	3-46-22640	1.346-140

主板

讓BMS測试平台	a BMS	教报中心。				BMS测试	·中小、				设久均制口	- 0
		Ē	E板数据			Date (A) (从板数据	(人田111年1	
					单体	电压(mV)						开关状态
自体电压1	0.0	单体电压2	0.0	单体电压3	0.0	单体电压4	0.0	单体电压5	0.0	单体电压6	0.0	风扇开关状态
4体电压7	0.0	单体电压8	0.0	单体电压9	0.0	单体电压10	0.0	单体电压11	0.0	单体电压12	0.0	关闭
4年13	0.0	单体电压14	0.0	单体电压15	0.0	单体电压16	0.0	单体电压17	0.0	单体电压18	0.0	加热开关状态
8体电压19	0.0	单体电压20	0.0	单体电压21	0.0	单体电压22	0.0	单体电压23	0.0	单体电压24	0.0	关闭
4年1月11日11日11日11日11日11日11日11日11日11日11日11日11	0.0	单体电压26	0.0	单体电压27	0.0	单体电压28	0.0	单体电压29	0.0	单体电压30	0.0	
					单体	温度(℃)						
单体温	寛1	0.0		单体温	寬2	0.0		单体温	宜3	0.0		
单体温	度4	0.0		单体温	度5	0.0		单体温	度6	0.0		
单体温	童7	0.0		单体温	童 8	0.0		单体温	實9	0.0		目标法研制性

界面分为主从两大板块,根据BMS主板和从板的功能进行区;可根据硬件控制输出的参数,再监控界面观察BMS数据返回的状况,检测的数据;

②、功能测试界面,用于在线测试,作用为检测BMS板的功能好坏,控制对应的信号输入 或者检测BMS板的各种功能,并与输入或者额定数据做对比,从而区别良品和不良品;

	BMS数据中心			BMS测试中心	设备控制中	心
	文件 G:/Bms测试平台/30串测试.proj			加载保存		
序号	测试名称	设备	类型	描述	结果	
1	供电电源开启	供电电源设备	控制	vol:12.0 V our:3.0 A out: true	^	、 状态: 停止
2	模拟量	虚拟电压设备	控制	vol:5.0 V cur:1.0 A out:true		
3	波形开	波形发射器操作	控制	波形频率:1kHz 占空比:20%		编辑
4	单体供电	模拟电池单元操作	控制	0, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 电压: 3300.0m	VIĘ	
5	温度模拟1-2	模拟温度操作	控制	通道1:25;通道2:25;		行后添加
6	温度模拟3—9	模拟温度操作	控制	通道3:25;通道4:25;通道5:25;通道6:25;通道7:25;通道8:25;通道9:25;		
7	供电开	继电器操作	控制	控制继电器操作		最后添加
8	读静态功耗	供电电源设备	检测	电流<=0.1		
9	激活	继电器操作	控制	控制继电器操作		冊郞余
10	iĝado	BMS设备数据	检测	主控数据:ACC信号采集电压值 从控数据:无		
11	上电状态	BMS设备数据	检测	0<=系统状态<=6		清空
12	FLASH自检	BMS设备数据	检测	主控数据:flash自检状态 从控数据:无		
13	读系统供电	BMS设备数据	检测	主控数据:系统供电电源电压(主控)从控数据:无		□ 失败后是否继续
14	单体电压温度	Bms单体数据	检测	3295<=电压<=3305 40<=盖度		
15	ON信号开	继电器操作	控制	控制继电器操作		开始测试
16	读ON信号	BMS设备数据	检测	11<=031信号采集电压值<=12		信止而公平
17	OM信号关	继电器操作	控制	控制继电器操作		停止则讯
18	充电开	继电器操作	控制	控制继电器操作		而后于未过度
19	读充电	BMS设备数据	检测	- 11<=奔申机电源输入电压状态检测反馈电压值<=12		规则和资源的

功能测试界面

功能测试使用:

新建一个测试项目,选择最后添加,然后选择控制仪器还是BMS的项目,进行参数编辑:

设备控制		数据检测	
BMS设备	延时	BMS设备数据	BMS单体数据
电源设备	波形发射设备	电源设备	数据采集器
继电器设备	温度设备	模拟电池	I0卡设备
模拟由池			

设备控制对应测试仪器,数据检测对应BMS板,如需检测BMS单体电压工步需要:

①选择电源设备,设置BMS供电电压

②选择继电器设备,打开供电输出开关,和激活开关(具体开关定义可在硬件控制界面查看)

③选择模拟电,设置输出的通道和输出的电流电压

④选择BMS单体数据,读取模拟电池的电压,并设定读取范围

⑤复位之前设定的仪器设备

设定好工步以后,点击保存到文件夹,即可随时加载调;

工步测试时,只需加载保存好的测试项目,点击开始测试,软件就会按编辑的测试项进行工步测试,测 试完成后给出判定结果

根据测试醒项目的不同,可保存或修改编辑好的项目列表,测试的基本流程是

设置仪器 – BMS读取 – 复位仪器 – 软件判断

设置仪器 - BMS输出 - 仪器检测 - 复位仪器 - 软件判断

③、硬件控制界面,管理整个BMS测试平台的仪器,从仪器的链接,到输出输入的控制均可在这个界面控制;

硬件控制界面

④、BMS板启动循序:设置BMS供电电源(设置电流电压,开始供电) - 开启16位继电器中的"供电""ACC"(激活信号)按键;

然后即可根据需求控制对应的仪器给BMS板提供各种信号进行测试。

5、测试完毕,关闭电源。